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Abstract
In this paper we make a theoretical study of electron transport through a multi-quantum-dot
system, in which the peripheral quantum dots of a one-dimensional chain are embodied in the
two arms of an Aharonov–Bohm interferometer. It is found that, in the absence of magnetic
flux, all the even molecule states of odd-numbered quantum-dot structures decouple from the
leads and in even-numbered quantum-dot systems all the odd molecule states decouple from the
leads, which indicates the formation of remarkable bound states in the continuum. Meanwhile,
what is interesting is that apparent antiresonance occurs in electron transport through this
structure, the positions of which are accordant with all even (odd) eigenenergies of the
sub-molecule of the even (odd)-numbered quantum dots without the peripheral dots. All these
results are efficiently modified by the presence of magnetic flux through this system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The well-known bound state in continuum (BIC) was first
proposed by von Neumann and Wigner for certain spatially
oscillating attractive potentials [1]. Over the past decades this
topic has been extensively investigated in the field of quantum
physics, and a number of theoretical studies of BIC have been
reported [2, 3]. Stillinger and Herrick generalized this problem
and analyzed the formation of BICs in a two-electron model,
despite the interaction between electrons [2]. The occurrence
of BICs was also discussed in a system of coupled Coulomb
channels and, in particular, in a hydrogen atom in a uniform
magnetic field [4]. Besides, the formation of a BIC becomes
of great interest in the study of various systems in relation to
such matters as the photodetachment of electrons from negative
ions and the spontaneous emission of photons from atoms in
photonic crystals [5, 6]. For unstable multilevel systems bound
states inside the continuum have been studied based on the
N-level Friedrichs model [7]. Wang et al reported that BICs

3 Author to whom any correspondence should be addressed.

in solid state electron systems can be induced by the lattice
structure [8].

Recently, the BIC phenomenon has also been shown to be
present in electronic transport through mesoscopic structures,
so accordingly becomes a main concern in mesoscopic
physics. For instance, Capasso et al reported the experimental
evidence for BICs in semiconductor heterostructures grown
by molecular beam epitaxy [9]. In addition, the formation of
BICs in mesoscopic systems has also received much attention
from theoretical physicists [10–15], and there are theoretical
works showing the formation of bound states in a four-terminal
junction and in a ballistic channel with intersections [10, 11].
The appearance of BICs has been predicted in quantum
waveguides with serial stubs [12–14]. Recently, it was shown
that in a one-dimensional semiconductor quantum wire with
two identical adatom impurities, BICs arise even when the
energy of the adatom impurity is located in a continuous one-
dimensional energy miniband [16].

However, so far BICs have been little discussed in
the context of electron transport through quantum-dot (QD)
systems. As is known, mutually coupled multi-QD systems, in
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comparison with a single-QD structure, exhibit more intricate
electron transport behaviors because these systems provide
more Feynman paths for electron transmission. Quantum
interference of electron waves passing through different
Feynman paths brings about abundant transport properties if
the size of the multi-QD system is shorter than or comparable
to the electron phase coherence length. In addition, multi-QD
systems possess more tunable parameters than a single QD to
manipulate the electronic transport behaviors. Typically, in
parallel-coupled QD systems, by the presence of an appropriate
magnetic flux or Rashba spin–orbit interaction, the couplings
between the molecular states of the coupled QDs and leads
can be adjusted, giving rise to the Fano effect [17–21].
Moreover, for some particular cases, some molecular state
can decouple completely from the leads, so that the so-called
BIC phenomenon comes into being. With this in mind,
the occurrence of BICs has been investigated in parallel-
coupled QD systems embedded in an Aharonov–Bohm (AB)
interferometer, where the position and number of BICs are
associated with the adjustment of the threading magnetic
flux [22, 23]. Besides, some works show the coexistence
of BIC and antiresonance induced by the degeneracy of
eigenlevels of QDs in the QD ring [24]. According to this
previous research, the existence of BICs plays an important
role in the quantum interference of QD structures. Therefore,
it is desirable to clarify the BICs in some typical coupled QD
structures.

With the development of nanotechnology, it is feasible
to fabricate coupled QDs, in particular a QD chain [25, 26].
Therefore we are now theoretically concerned with the electron
transport properties of the this structure, by considering it
embodied in an AB interferometer. We find that, in the
absence of magnetic flux, all the even molecule states for odd-
numbered QD structures decouple from the leads and in even-
numbered QD systems all odd molecule states decouple from
the leads, bringing about the formation of BICs. In previous
works the even–odd effect also attracted much attention [27].
Interestingly, antiresonances also occur in electron transport
through this structure, and their positions are in accord with
all even (odd) eigenenergies of the sub-molecule of the even
(odd)-numbered QDs without the peripheral QDs. Besides, the
occurrence of BICs and antiresonance are efficiently modified
by the presence of magnetic flux through this system.

The rest of the paper is organized as follows. In section 2,
the model Hamiltonian to describe electron behavior in the
multi-QD structure is first introduced. Then a formula for
linear conductance is derived by means of the nonequilibrium
Green function technique. In section 3, the calculated
results regarding the conductance spectrum are shown. Then
a discussion on the numerical results, particularly those
concerning the occurrence of BICs and antiresonance, is given.
Finally, the main results are summarized in section 4.

2. The theoretical model

The parallel multi-QD structure that we consider is schemati-
cally illustrated in figure 1(a). The electron motion in this sys-
tem can be well described by a generalized Anderson impurity

Figure 1. (a) Schematic of a QD chain embodied in an
Aharonov–Bohm interferometer with two magnetic fluxes �L and
�R through the subrings of this structure. (b) An illustration of the
couplings between the molecule states of the QDs and the leads.
(c), (d) Schematics of T-shaped QD structures.

Hamiltonian which reads

H = H0 + HT + He−e, (1)

with

H0 =
∑

kσα∈L,R

εαkc†
αkσ cαkσ +

N∑

j=1,σ

ε j d
†
jσ d jσ

+
N−1∑

σ, j=1

t j d
†
j+1σ d jσ + h.c.,

HT =
∑

αkσ

Vα1d†
1σcαkσ +

∑

kσ

VαN d†
Nσ cαkσ + h.c.,

He−e =
∑

j

U j n j↑n j↓,

where c†
αkσ (cαkσ ) is an operator to create (annihilate) an

electron of the continuous state k in lead-α, and εαk is the
corresponding single-particle energy, with σ being the spin
index. d†

jσ (d jσ ) is the creation (annihilation) operator of an
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electron in QD- j , and ε j denotes the corresponding electron
level. t j is the interdot coupling coefficient between the j th
and the ( j + 1)th QDs. HT describes the electron tunneling
between the leads and QDs; in the case of symmetrical dot–
lead coupling Vα j , the dot–lead coupling coefficients can be
written explicitly as VL1 = V eiφL/2, VLN = V e−iφL/2, VR1 =
V e−iφR/2, and VRN = V eiφR/2 with V being the dot–lead
coupling strength. The magnetic flux, in the symmetric gauge,
gives rise to the AB phase φα = 2π�α/�0, where �α is the
magnetic flux threading the subrings and �0 = hc/e is the
flux quantum. The last term denotes the intradot Coulomb
interaction.

In order to study the electron transport properties of this
structure, the linear conductance in this system should be
calculated, which is associated with the Green functions and
takes the form of [28, 29]

G = e2

h

∑

σ

Tr[�LGa
σ (ω)�RGr

σ (ω)]ω=εF . (2)

�L, defined as [�L]i j = 2πVLi V ∗
L jρL(ω), describes the

coupling strength between the QDs and lead-L. We will ignore
the ω-dependence of �L since the electron density of states in
lead-L, ρL(ω), can usually be viewed as a constant. Similarly,
we can define [�R], the coupling strength between the QDs
and lead-R. In equation (2) the retarded and advanced Green
functions in Fourier space are involved. They are defined as
follows: Gr

j l,σ (t) = −iθ(t)〈{d jσ (t), d†
lσ }〉 and Ga

jl,σ (t) =
iθ(−t)〈{d jσ (t), d†

lσ }〉, where θ(x) is the step function. The
Fourier transforms of the Green functions can be performed
via Gr(a)

j l,σ (ω) = ∫ ∞
−∞ Gr(a)

jl,σ (t)eiωt dt . These Green functions
can be solved by means of the equation-of-motion method.
By a straightforward derivation, we obtain the solution of the
retarded Green function, which is written in a matrix form as

Gr
σ (ω) =

⎡

⎢⎢⎢⎢⎢⎢⎣

g−1
1σ −t∗

1 0 · · · i�1N

−t1 g−1
2σ −t∗

2 0
...

. . .
... 0 −t∗

N−2 g−1
N−1σ −t∗

N−1

i�N1 · · · 0 −tN−1 g−1
Nσ

⎤

⎥⎥⎥⎥⎥⎥⎦

−1

. (3)

Here
g jσ = [(z − ε j)Sjσ + i� j j]−1,

Sjσ = z − ε j − U j

z − ε j − U j + U j 〈n j σ̄ 〉 .
(4)

The g jσ is the zero-order Green function of QD- j unperturbed
by the other QDs with z = ω + i0+ and �i j = 1

2 (�
L
i j + �R

i j ),
and Sjσ arises from the second-order approximation for the
Coulomb interaction [28, 30]. Notice that � j j will become
zero for the cases of j 	= 1 or N . The average electron
occupation number in QDs is determined by the relations
〈n jσ 〉 = 1

2π

∫
dω Im G<

j j,σ .
For the noninteracting case, it should be noted that the

linear conductance spectrum of the coupled QD structure
reflects the eigenenergy spectrum of the molecule made up of
the coupled QDs. In other words, each resonant peak in the
conductance spectrum represents an eigenenergy of the total

QD molecule, rather than the levels of the individual QDs.
Therefore, it is necessary to transform the Hamiltonian into the
molecular orbital representation of the QDs. It is quite helpful
to analyze the numerical results of the linear conductance
spectrum.

We now introduce the electron creation (annihilation)
operators corresponding to the molecular orbits, i.e. f †

jσ ( f jσ ).
By diagonalization of the single-particle Hamiltonian of the
coupled QDs, we find the relation between the molecular
and atomic representations (here each QD is regarded as an
‘atom’). It is expressed as [f †

σ ] = [η][d†
σ ]. The N × N transfer

matrix [η] consists of the eigenvectors of the QD Hamiltonian.
In the molecular orbital representation, the single-particle
Hamiltonian takes the form H = ∑

kσα∈L,R εαkc†
αkσ cαkσ +∑

j=1,σ e j f †
jσ f jσ +∑

αkσ vα j f †
jσ cαkσ +h.c., in which e j is the

eigenenergy of the QDs. The coupling between the molecular
state | jσ 〉 and the state |kσ 〉 in lead-α can be expressed as

vα j = Vα1[η]†
1 j + VαN [η]†

N j . (5)

In the case of symmetric QD–lead coupling, the above relation
can be rewritten as vα j = V ([η]†

1 j + [η]†
N j e

iφα ). Figure 1(b)
shows the illustration of the QD structure in the molecular
orbital representation. We can define γ α

jl = 2πvα jv
∗
αlρα(ω)

which is the characteristic quantity that reflects the couplings
between the molecule states and leads.

3. Numerical results and discussions

With the formulation developed above, we can perform the
numerical calculation for the linear conductance spectra of the
multi-QD system. Prior to the calculation we need to introduce
a parameter t0 as the unit of energy and take the Fermi level εF

as the zero point of energy.

3.1. The triple-QD structure

The electron properties of the 2-QD structure, just the parallel-
coupled double QDs, have received much attention during
recent years [19, 20]. To begin with, we take the triple-QD
structure to investigate the electron transport process without
considering the many-body terms. As a typical case, we choose
the parameter values t j = t0 for all QDs and �α

j j = � to
perform the numerical calculation; ε j , the quantum-dot level,
can be shifted with the adjustment of gate voltage. Figure 2
shows the numerical results of the linear conductance in the
absence of a magnetic field. From this figure we find that in
the case of ε j = ε0 (see the solid line in figure 2(a)), two
conductance peaks appear in the conductance curve, consistent
with the positions where e1 = ε0 − √

2t0 and e3 = ε0 + √
2t0

are both equal to zero. But there is no peak corresponding to
the position of the eigenenergy e2 = ε0 = 0. In contrast,
at this point the conductance presents its zero. In order to
obtain a clear physical picture, we analyze this problem in the
molecular orbital representation. By solving the [η] matrix and
utilizing the relation vα j = V ([η]†

1 j + [η]†
N j), one can find

in such a case that vα2 is fixed at zero, which brings out the
complete decoupling of the second molecule state |2σ 〉 from
the leads and the formation of BIC. After a further analysis,
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Figure 2. The linear conductance spectra of a triple-QD structure.
The structure parameters take the following values: � = t j = t0 and
ε1 = ε3 = ε0. (a) for the cases of ε2 = ε0 + δ with δ equal to 0, t0,
and 2t0. (b) The conductances in the case of φL = φR = φ with
φ = 0.1π , π , and 1.1π .

we find that under the condition of ε1 = ε3 = ε0, irrelevant to
ε2, vα2 is always equal to zero, since the [η] matrix is given by

[η] = 1√
2�

⎡

⎣
2t0√
�−δ

−√
� − δ 2t0√

�−δ−1 0 1
2t0√
�+δ

√
� + δ 2t0√

�+δ

⎤

⎦ (6)

with ε2 = ε0 + δ and � =
√

δ2 + 8t2
0 . Thus the feature of QD-

2 is not the necessary condition to cause the occurrence of BIC
in electron tunneling through this structure. But the increase
of δ gives rise to γ11 � γ33, then a ‘more’ resonant state and
a ‘less’ resonant state are constructed and Fano interference
occurs between the coupled molecule states, corresponding
to the case of δ = 2t0 in figure 2(a). In this figure, it is
clear that the BIC phenomena are robust despite the change
of the conductance lineshape. After these discussions, it is
desirable to clarify the position of the antiresonant point in the
linear conductance spectra. Based on the results in figure 2(a),
we can see an interesting result that for the case of ε2 = 0
the conductance becomes zero. That is to say, for such a
configuration antiresonance always occurs when ε2 is aligned
with the Fermi level of the structure. Besides, with the help of
equation (2), the expression for the conductance, such a result
can be analytically obtained.

The underlying physics responsible for antiresonance is
quantum interference. In order to clarify its mechanism,
we analyze the electron transmission in the molecular orbital
representation. Due to decoupling, only the molecule states
|1σ 〉 and |3σ 〉 couple to the leads, which can also be called
the bonding and antibonding states. To our knowledge, the
molecular orbits of coupled double-QD structures, e.g. the
well-known T-shaped QDs, are regarded as the bonding and
antibonding states. Then, by representation transformation

[a†
σ ] = [β][f †

σ ], such a configuration is changed into the T-
shaped double-QD system (see figure 1(c)) of the Hamiltonian
H = ∑

kσα∈L,R εαkc†
αkσ cαkσ +∑2

σ, j=1 E j a
†
jσ a jσ + τ1a†

2σ a1σ +
∑

αkσ wα1a†
1σ cαkσ + h.c.. By a straightforward derivation,

the relations between the structure parameters of the two
configurations are expressed as E1 = ε0, E2 = ε2,
τ1 = √

2t0, and wα1 = Vα1, respectively. Accordingly,
we have γ α

11 = �|[β]11|2 and γ α
33 = �|[β]12|2 with

[β] = 1√
2�

[ 2t0√
�−δ

2t0√
�+δ√

� + δ −√
� − δ

]
. So the triple-QD structure

is transformed into a T-shaped double QD with ε2 being
the level of the dangling QD. As discussed in previous
works [15, 17, 28], in the T-shaped QDs antiresonance always
occurs when the dangling QD level is the same as the Fermi
level of the system. On the basis of such an analysis, one can
then understand that in this triple-QD system the antiresonant
point in the conductance spectrum is always consistent with the
position of ε2 = εF = 0.

The occurrence of antiresonance in the T-shaped QDs
can be interpreted as the quantum interference between two
kinds of transmission paths. We demonstrate this issue by
rewriting the Hamiltonian of the T-shaped double-QD structure
as H = H0 + Ht in which

H0 =
∑

pσ

ξLpα
†
Lpσ αLpσ +

∑

pkσ

(tpkα
†
Lpσ cRkσ + h.c.)

+
∑

kσ

εRkc†
Rkσ cRkσ +

∑

σ

ε2a†
2σ a2σ ,

Ht =
∑

pσ

Vpα
†
Lpσ a2σ + h.c..

(7)

Here the old operators a1σ and cLkσ are expanded in terms of
this new set: a1σ = ∑

p νpαLpσ and cLkσ = ∑
p νkpαLpσ .

Under this new representation, the electron transmission is
well described: one represents an electron transmission path
whereby the electron starts from the left lead and tunnels
directly into the right lead, the other is a different transmission
path in that the electron wave must visit the dangling QD as it
tunnels through the QD structure. Note that the electron wave
visiting the dangling QD will result in its phase change, and
the phase difference between the two kinds of path gives rise
to destructive quantum interference. A detailed discussion is
presented in [30].

Next we investigate the modulation of magnetic field on
the formation of BICs and antiresonance in electron transport
through these structures. Here, we are interested in the case of
equal magnetic flux through each subring, i.e. φL = φR = φ.
To present a generalized situation, the QD levels are assumed
to be ε1(3) = ε0 and ε2 = ε0 + 2t0, respectively. When a
small magnetic flux is applied, a new Fano lineshape comes
into being in the vicinity of the Fermi level, as shown by
the solid line in figure 2(b). This is because the originally
decoupled molecule state |2σ 〉 begins to couple to the leads
with a small state–lead coupling strength (in comparison with
γ11 and γ33), which causes the disappearance of BIC but
offers a resonant channel for the Fano interference. With the
increase of magnetic flux to φ = π , the conductance curve
shows itself as a Breit–Wigner lineshape and the position of
its peak coincides with the Fermi level. It can be anticipated

4
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that the first and third molecule states decouple from the lead
simultaneously and only the second molecule state couples to
the leads. Based on the discussion in the above section, in the
presence of a magnetic flux the coupling between the molecule
state | jσ 〉 and lead-α takes the form vα j = V ([η]†

1 j+[η]†
N j e

iφ),
by which one can clarify the results of vα1(3) = 0 and vα2 =√

2V in the case of φ = π . Therefore, in such a case there
exist two bound states in the electron transport process, and
the occurrence of BICs is more striking in comparison with the
case of zero magnetic flux.

In the following we incorporate the many-body effect into
the calculation of the conductance spectrum within the second-
order approximation to truncate the equation of motion of the
Green functions. Since the level of QD-2 is associated with the
antiresonance in the noninteracting case, we first consider that
the many-body term only exists in QD-2. Figure 3(a) exhibits
the calculated conductances with U2 = 2t0 and U1(3) = 0. It
shows that in the absence of magnetic flux, there appear two
antiresonant points in the conductance curve, corresponding
to the positions of ε0 = 0 and −2t0. This is because the
Coulomb repulsion splits the level of QD-2 ε2 into ε2 and
ε2 + U2. As a consequence, whichever level of QD-2 is
aligned with the Fermi level antiresonance still occurs. This
means that in such a case the Coulomb interaction cannot
destroy the occurrence of antiresonance. Besides, it is clear
that in the case of magnetic flux φ = π the conductance
spectrum shows itself as a Breit–Wigner lineshape with its
peak at ε0 = 0, identical with the noninteracting case. By
virtue of representation transformation, such a result can be
readily explained—the characteristics of the second molecule
state, including its level and the state-lead coupling, are only
determined by the features of QD-1 and QD-3 in the ‘atomic’
representation. Since in the case of φ = π only the second
molecule state couples to the leads, it is understandable that
the many-body effect in QD-2 makes zero contribution to the
electron travel. By comparing the conductance spectra, we
can readily find that the many-body effect in QD-2 is not able
to restrain the formation of BICs, because in the absence of
magnetic flux the conductance peak disappears at the position
of ε0 = 0 and in the case of φ = π the conductance spectrum
just presents one resonant peak at the point of ε0 = 0.

Figure 3(b) shows the calculated conductance spectra by
considering the on-site energies of all the QDs U j = U = 2t0
and incorporating the many-body effect to the second order.
The conductance spectra herein split into two groups due
to Coulomb repulsion. But in each group the appearances
of BICs and antiresonance are similar to the case of zero
Coulomb interaction. In addition, between the two separated
groups there is antiresonance fixed in the conductance spectra.
Notice that unlike the conventional electron–hole symmetry,
the position of such a conductance zero departs from ε0 =
−U

2 . We can readily explain this phenomenon: because of the
formation of BICs the average electron occupation numbers
in the QDs are changed, as shown in figure 3(c). Thus,
around the point of ε0 = −U

2 , the average electron occupation
number 〈n jσ 〉 is no longer equal to 1

2 and the electron–hole
symmetry is broken by the presence of BICs [31]. In this
sense we can understand that the BIC phenomenon causes the

Figure 3. The conductance in the presence of the many-body effect
with φ = 0 and π . (a) The conductance in the case of U2 = 2t0 and
U1 = U3 = 0. (b) The conductance spectra with U j = U = 2t0.
(c) The average electron number in each QD under the condition of
(b).

breaking of electron–hole symmetry under the second-order
approximation.

3.2. Multi-QD structures

In this section we consider whether the electron transport
properties of this structure show new phenomena with the
further increase of QD number. As a typical case, the structure
parameters take the values as � j j = �, t j = t0, φα = φ,
and ε j = ε0, respectively, for the numerical calculation. Then
the eigenenergies of the N-QD structure are given by e j =
ε0 − 2t0 cos( jπ

N+1 ) and

[η] =
√

2

N + 1

×

⎡

⎢⎢⎢⎣

sin N 2π
N+1 sin N(N−1)π

N+1 · · · sin Nπ
N+1

sin N(N−1)π

N+1 sin (N−1)2π

N+1 · · · sin (N−1)π

N+1
...

...

sin Nπ
N+1 sin (N−1)π

N+1 · · · sin π
N+1

⎤

⎥⎥⎥⎦ .

By analyzing this matrix, we can see that in the case of odd N ,

[η]†
1 j =

{ [η]†
N j , j ∈ odd

−[η]†
N j , j ∈ even;

(8)

5
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but in the presence of the even N , the opposite results will
come about, i.e.

[η]†
1 j =

{−[η]†
N j , j ∈ odd

[η]†
N j , j ∈ even.

(9)

On the other hand, the coupling strength between the molecule
state | jσ 〉 and lead-α takes the form vα j = V ([η]†

j1+eiφ[η]†
N j ).

With the help of this relation, we can ascertain which molecule
state decouples from the leads and becomes a bound state for
the various QD structures. Correspondingly, in the absence of
magnetic flux all even-molecule states decouple from the leads
for the odd-numbered QD structures, but all odd-molecule
states will decouple from the leads in the even-numbered QD
systems. In figure 4(a) we plot the conductance spectra of the
multi-QD structures (N = 3–6) with the shift of QD level.
From the figure we can find the distinct occurrence of BICs.
Taking the N = 4 case as an example, only two peaks appear in
the conductance spectra corresponding to the eigenenergies e2

and e4, and the two molecule states (|1σ 〉 and |3σ 〉) completely
decouple from the leads. Alternatively, when the magnetic flux
is taken into account with φ = π , this phenomenon will be
modified thoroughly, as shown in figure 4(b). Here, unlike the
zero magnetic flux cases, in the case of odd-numbered QDs
the odd-molecule states decouple from the leads, and the even-
molecule states decouple from the leads for the even-numbered
QD systems. Therefore, one can find that in such a structure the
bound states arise alternately with the adjustment of magnetic
flux. By virtue of the above analysis, we can conclude that
the emergence of BICs is tightly related to the space inversion
symmetry of the system. And such space inversion symmetry
leads to the compact form of the [η] matrix and the well-
regulated relationships between the elements of the matrix.

After the investigation of the BICs in electron transmission
through the coupled QDs, it is necessary for us to ascertain the
characteristic of antiresonance with increase in QD number.
By comparing the numerical results in figure 4(a), the cases of
zero magnetic flux, we find that the antiresonant points in the
conductance spectra are just associated with the eigenenergies
of QD molecules in which the peripheral QDs decouple from
the other ones. For instance, the eigenenergies of the sub-
molecule of the four-QD structure are e′

1 = ε0 − t0 and e′
2 =

ε0+t0. As a result, it is found that the e′
2 aligned with the Fermi

level brings out the appearance of antiresonance. In addition,
in the case of N = 5, the eigenlevels of its sub-molecule are
e′

1 = ε0 − √
2t0, e′

2 = ε0 and e′
3 = ε0 + √

2t0. We can
find that when e′

1 or e′
3 is equal to zero, the electron transport

shows itself as antiresonance. It seems that the antiresonant
points are consistent with all even(odd) eigenenergies of the
sub-molecule of the even(odd)-numbered QDs. Accordingly,
there is a need to validate the correctness of such a prediction.
It is certain that when the molecule state | jσ 〉 couples to the
leads then γ α

j j = �|2[η]†
1 j |2. Similar to the discussion on

the triple-QD structure, such a relation can also be allowed
to originate from the T-shaped QD structure by considering
|[β]1l | = |2[η]†

1 j |. Thereby, e j is just the lth eigenlevel
of the coupled T-shaped QDs. We hence can say that these
two structures are equivalent to each other, and the parallel

Figure 4. The conductance spectra with an increase in QD number.
The structure parameters take the values � = t j = t0 and ε j = ε0.
(a), (b) The conductances in the cases where N is increased from 3 to
6 in the absence or presence of magnetic flux. In (c) the 10-QD
structure is investigated.

multi-QD system can be transformed into a T-shaped QD
structure by representation transformation. Since the electron
transport properties of the T-shaped QD structure are clear
and characterized by antiresonance, we can conclude that in
electron transport through this parallel multi-QD structure,
antiresonance will inevitably occur. Furthermore, the structure
parameters of the corresponding T-shaped QDs can be obtained
because the [β] matrix and the eigenenergies are known. For
instance, with respect to the five-QD system, we can see that
in the absence of magnetic flux only the first, third, and fifth
molecule states couple to the leads because of decoupling.
Meanwhile, with the analysis of the [η] matrix we can obtain

[β] = 2
√

2
5 [sin π

6 , sin π
2 , sin π

6 ]T in such a case. Then, the
corresponding T-shaped QD structure is well defined, as shown
in figure 1(d). And the structure parameters take the values as
E1 = ε0, E2 = ε0 − √

2t0, and E3 = ε0 + √
2t0 with the

interdot coupling strengths τ1 = τ2 = t0√
2
. The origin of the

antiresonance in the T-shaped system can be well understood,
so in this multi-QD structure the occurrence of antiresonance in
the electron transport process is ascertained. On the other hand,
we can see that the modulation of the magnetic flux through
the interferometer can efficiently change the appearance of
antiresonance, namely, the antiresonant points are the same as
all even(odd) eigenlevels of the sub-molecule of the odd(even)-
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numbered QDs, as shown in figure 4(b). Besides, the results
in figure 4(c), describing the case of ten QDs, support our
predication. So, the electron transport properties in this system,
involving the formation of BICs and antiresonance, have been
clarified.

Now we focus on the case of φα = nπ and φα′ 	= nπ

where some molecule states of the coupled QDs decouple from
lead-α but couple to lead-α′. Thereby, in such a case one will
not find the BIC phenomena, since there is no probability of
� j j = 0. However, one will see the striking antiresonance
in electron tunneling through the structure. Correspondingly,
there are two kinds of antiresonant points in the conductance
spectra. First, with respect to the odd-numbered QD structures,
when φα = (2n − 1)π and φα′ 	= nπ the odd-molecule
state |2 j − 1, σ 〉 will decouple from lead-α, and such a kind
of decoupling can result in antiresonance at the positions of
e2 j−1 = 0. In addition, the couplings between all even-
molecule states and the leads offer channels for electron
tunneling, and the quantum interference among electron waves
passing through these channels also causes antiresonance. As
discussed above, these zero points of the conductance are
consistent with the even eigenenergies of the sub-molecule
of the whole QD structure. As shown by the dashed line in
figure 4(d) with φL = 0.5π and φR = π , there are three
antiresonances corresponding to the positions of e1, e3, and
e5 = 0, respectively. Besides, in the case of e′

2 = 0 the
electron transport shows antiresonance. It should be pointed
out that due to e3 = e′

2 the antiresonance valley around the
point of ε0 = 0 is broadened [28]. On the other hand, in the
case of φα = 2nπ and φα′ 	= nπ the even-molecule states
will decouple from lead-α but all odd-molecule states couple to
both leads. The solid line in figure 4(d) describes this situation
with φL = 0 and φR = 0.5π . Obviously, two antiresonant
points correspond to the points of e2(4) = 0, since the molecule
states |2σ 〉 and |4σ 〉 decouple from lead-L. Meanwhile, the
other antiresonances, from the quantum interference among
the odd-molecule states, coincide with the cases of e′

1(3) = 0.
By a same token, the electron transport properties of the even-
numbered QD structure can also be analyzed, which will be
opposite to those in the odd-numbered QD systems.

Based on the results of decoupling in electron transport
through this kind of structure, one can expect that when a
finite bias is applied on the system, a negative differential
capacitance will emerge [32]. In figure 5 we plot the curves
of the average occupation number of electrons in the QDs
with increase in the bias voltage. Obviously, the figure
shows that the average occupation number of electrons in QDs
decreases with the increase of bias voltage, which indicates
the appearance of negative differential capacitance. We can
illustrate such a phenomenon as follows. When a finite bias is
applied on the system, the QD levels can be adjusted by the bias
voltage. They are not aligned with each other, since these QDs
are located at different positions of the electrostatic potential
induced by the bias voltage [30]. As a consequence, the
decoupling phenomenon can be demolished since the structure
parameters that take some specific values are destroyed by the
variation of the bias voltage. Thus, the electrons located in QDs
due to the decoupling effect, driven by the bias, will take part in

Figure 5. The average electron occupation number in the QDs with
the increase of bias voltage. The parameters used in the calculation
are: � = t j = t0, μR = 0, μL = eV , and the bandwidths of the leads
are taken as 5t0. To simulate the dependence of the QD levels on the
bias, we take ε1 = εN = 1

2 eV and the levels of the other QDs as
1
4 eV .

electron tunneling and then enter the drain of the system. With
such an analysis, one can understand the negative differential
capacitance driven by the bias voltage.

Finally we should emphasize the following point about the
many-body term. Based on the calculation of the triple-QD
structure, we can predict that when the Coulomb repulsions are
taken into account within the second order, the single-electron
transport properties will remain although the conductance
spectra are divided into two groups. However, in the strong
correlation regime the Kondo resonance must modify the linear
conductance spectrum when the QD levels are far below the
Fermi energy [33]. Such an interesting topic is beyond the
scope of the present work, and will be left for future study.

4. Summary

With the help of the nonequilibrium Green function technique,
we have theoretically investigated the electronic transport
properties in a multi-QD system, in which a one-dimensional
QD chain is embodied in a Aharonov–Bohm interferometer
with the peripheral QDs in its two arms. As a result, we have
found the remarkable BIC phenomenon and antiresonance
in the process of electron transport. That is to say, as for
the odd-numbered QD structures, in the absence of magnetic
flux all even-molecule states of the QDs decouple from the
leads, whereas the odd-molecule states decouple from the
leads for the even-numbered QD systems. On the other
hand, the antiresonant points in the conductance spectra
are consistent with the even(odd) eigenlevels of the sub-
molecule of the even(odd)-numbered QD structures in the
absence of peripheral QDs. By representation transformation,
these results are analyzed in detail. Besides, it has been
found that with the presence of magnetic flux through the
interferometer, the appearance of BICs and antiresonance is
completely modified. Furthermore, by adjusting the magnetic
flux through any subring of the structure, some molecule states
decouple from one lead but still couple to the other, which
leads to the occurrence of new antiresonance. These properties
remain when the many-body effect due to the intradot electron
interaction is taken into account.
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It should be noted that the research into BICs originated
from aspects of atomic and molecular physics, and it is of
importance for the study of quantum information [14, 23].
Two simultaneous BICs could be used as microscopic units for
storing information, since the storage of quantum information
requires a complete stable plane in the Hilbert space of the
molecule. Coupled QDs, also called artificial molecules, are
the suitable systems for the experimental study of BICs due to
the possibility of adjusting their structure parameters; we thus
expect that the calculated results in this work could be helpful
for the current experiments.
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